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Abstract - Parallel programming is still being based upon antiquated sequence-based definitions
of the terms “algorithm” and “computation”, resulting in programs which are architecture depen-
dent and difficult to design and analyze. By focusing on obstacles inherent in existing practice, a
more portable model is derived here, which is then formalized into a model called F-Nets which uti-
lizes a combination of imperative and functional styles. This formalization suggests more general
notions of algorithm and computation, as well as insights into the meaning of structured program-
ming in a parallel setting. To illustrate how these principles can be applied, a very-high-level graph-
ical architecture-independent parallel language, called Software Cabling, is described, with many of
the features normally expected from today’s computer languages (e.g. data abstraction, data paral-

lelism, and object-based programming constructs).

I. Introduction

In 1936, Alan Turing proposed a formal model for computation, and the notion that computation and
Turing Machines are inextricably linked has since been widely accepted, often described as the Church-
Turing Thesis. Since all of the important action in a Turing Machine computation occurs at a single point
(under the machine’s single “head™), the space-time diagram of the computation is naturally a line—i.e. a
sequence of operations. Although programs for traditional computers don’t look much like programs for

Turing Machines, this perception of a computation as a sequence of operations has had a pervasive effect



on how we program virtually all computers. An algorithm, or more specifically, a program, is a description
(usually abbreviated or compressed) of the computation to be performed, so it should be no surprise that

algorithms typically resemble compressed or folded sequences of operations.

One might imagine that the development of parallel programs would begin with the development of par-
allel algorithms, but the history of the term algorithm as a means of expressing a sequence of operations
has made the term “parallel algorithm” an oxymoron. Instead of correcting this by extending the term’s
definition to encompass its new requirements, the common approach to parallel programming has been to
focus on the fact that almost all parallel computers are constructed from a set of interconnected standard
sequential processors. This has led us to dispense with the notion that a program is the manifestation of a
single algorithm, and instead to consider a parallel program as a set of sequential programs (or processes
or objects) which communicate, each being the embodiment of a sequential algorithm. This view of paral-

lel programming has been particularly troublesome, for a number of reasons which will be discussed.

Functional and dataflow programming approaches, based more closely on Church’s recursive function
theory, have been offered as alternatives to this sequential thinking. Unfortunately, these notations, where
the program is expressed as a function, rob the programmer of an extremely powerful semantic construct
which is efficiently implementable on virtually every commercial computer—i.e. volatile memory. As a
result, the programmer must either go to extremes to make do without memory, often by copying data
superfluously (e.g. to mimic data structure update), or the language must bend the rules and allow some
cases of volatile memory semantics, thwarting its functional properties. These approaches also often force
compilers, rather than programmers, to identify sensible opportunities for parallelism, and language pro-
cessors and other tools which are responsible for efficiently mapping the functional semantics back onto
the underlying hardware have not demonstrated that thf;y are up to the task—i.e. they have only rarely

competed with imperative sequential languages. In addition, the functional models, by definition, cannot



express non-determinism, and important issues like I/O do not fit naturally within the model.

Other approaches have also had limited success. Data-parallel, or SIMD-style, languages (e.g. HPF) are
based on a model where the programmer envisions a single flow of control, which is multiplied (where
possible) to work on multiple data items at once, and its application is therefore limited to cases which fit
that model. CSP-based languages (e.g. Occam) are based on small-granularity approaches where tradi-
tional sequential languages are disposed of completely, and these have proven viable only on processors
designed specifically to facilitate them. The Bulk-Synchronous Parallel (BSP) method introduces syn-
chrony as a basis for simplifying programs, but requires compilers and runtime systems to try to remap to
an asynchronous style for performance. Further comparisons will be made after explaining the current

model.

This document proposes going back to the source of the problem—i.e. the definition of the terms “algo-
rithm” and “computation”. It begins in section II with an analysis of the drawbacks of the communicating
process approach, and then in section IIl describes a step-by-step approach to remedy some of these draw-
backs. As a result, in section 1V, a new simple, formal, and portable computational model, called F-Nets, is
proposed, which suggests new more general definitions for “algorithm” and “computation” which encom-
pass both sequential and parallel notions. In section V, these definitions are compared with the more tradi-
tional ones, leading to insights such as a more general definition of structured programming, and some
properties of the F-Net model are explored. Finally, in section VI, these notions are then used to motivate a

new high-level architecture-independent parallel programming language, Software Cabling.

I1. Problem Statement

Before embarking on solutions to problems arising from traditional parallel programming approaches

based on communicating sequential processes, it is important to understand what those problems are.



Many of these problems originate with the fact that communication is the secondary result of operations in
the individual processes rather than being specified directly. That is, the programmer uses individual oper-
ations within separate sequential algorithms to hopefully cooperate to move the data between the intended
algorithms in the intended manner at the intended times. Tools are generally not available (and in many
cases, cannot be constructed) to statically (i.e. syntactically) determine whether or not the programmers

intentions have been correctly encoded.

Non-determinism, a natural and useful property of parallel computations, is not even expressible in
sequential algorithms (or within a Turing Machine). It can be introduced between processes in a parallel
program, but only by using an approach identical to an improperly-constructed communication. Because
of this, and because of the difficulty in finding non-determinism which has been unintentionally intro-
duced (so-called “Heisenbugs”), non-determinism has become scorned by parallel programmers, rather

than being regarded as one more tool to speed programs and to simplify programming.

Whereas a sequential algorithm can be implemented in just about any computer language, and is porta-
ble to nearly any sequential computer, a set of communicating sequential algorithms is only as portable as
the communication mechanism. Specifically, multi-processor computer systems are typically built to
optimize one communication mechanisms at the expense of others, so parallel programmers immediately
restrict themselves to a particular class of target architecture the moment they choose a communication
mechanism. Similarly, they further restrict themselves to specific sizes and types of machines depending
upon the granularity at which communication is performed.

Because the programmer is required to specify the order (i.e. sequence) in which operations execute on
each processor, and because the individual processes execute asynchronously, communication often
requires one process to stop and wait for data from another to become available, leading to potentially

wasted CPU cycles. To remedy this, parallel programs are often (manually) tuned, based on specific envi-



ronmental assumptions, to communicate at specific intervals, but this takes a great deal of planning, exper-
imentation, and/or knowledge of both computation and communication timings. As a result, even if the
programmer can succeed at minimizing execution time under some particular circumstances, any change
in the computation or communication timings resulting from unexpected loads on some system resources

or from executing the program in a different environment can obviate all such planning.

In spite of such important and formal studies as Hoare’s CSP (Communicating Sequential Processes)
and Milner’s CCS (Calculus of Communicating Systems), the addition of communication between pro-
cesses adds immense complexity and makes a parallel programs extremely difficult to analyze formally.
Knowing the input-output mapping which each process expresses is not sufficient to determine the behav-
ior of those processes when composed into a parallel program—the relative order in which those inputs
and outputs are consumed or produced must also be taken into account. Even after a parallel program has
executed, determining the function which it computed is extremely difficult, because each communication
effectively transfers a portion of the internal state of one process to another, and since the processes are
typically long-lived, this internal state can be the result of an arbitrarily-long history of computation within
the process initiating the communication (and preceding communications between that process and oth-

ers).

111. Derivation of a new model

Although the development of a new computational model can have many different starting points, we
justify some features here by beginning with traditional programming practice—i.e. shared-memory and
message-passing programming-—and then performing stepwise modifications to introduce a more portable
(though compatible) communication model, and a process model which lends itself to more abstract and

processor-independent specification.



A. Portable communication model

For a communication model, we wish to gain portability by preserving the advantages of both message
passing and shared memory, so we begin by identifying their similarities. For example, both a send prim-
itive in a message-passing semantics and an unlock primitive in a shared-memory semantics can be con-
sidered as an act of making something available. In fact, if we temporarily make a simplifying assumption
that each shared-memory lock is statically associated with some region of shared memory which cannot be
accessed without first exclusively acquiring the lock, then both of these primitives (send and unlock)
effectively make a specific data item available. (Non-exclusive locks for reading will be considered later.)
These primitives also provide an identifier with which the data item can eventually be found: For send,
this identifier is typically a process ID and message tag, and for unlock, the identifier is the address of

the lock. More abstractly, we call this act of making data available “tossing” the data item.

Likewise, both a message receive and a shared-memory lock primitive can be considered as finding
an available item with a given identifier, gaining access to the item, and making it unavailable. (This makes
the simplifying assumption that, for shared memory, every item has been implicitly tossed at the begin-

ning of execution). This operation will here be called “catching” an item.

This is somewhat of an over-simplification. For example, in message passing, one can usually expect to
toss (i.e. send) many items with the same identifier (i.e. process and tag), and to have them queued or
otherwise buffered so that all can eventually satisfy catches (i.e. receives), but in shared memory, one
usually expects each toss (i.e. unlock) for a specific identifier to effectively over-ride previous ones.
This difference in semantics will be remedied by simply forbidding a process from tossing an item if
there is already an item with the same identifier outstanding (i.e. waiting for a catch). Such a restriction
is not a major imposition for shared memory, since there are no convincing reasons that a program must be

able to perform multiple unlocks without intervening locks for the same data item, but more consider-



ation is given here to restricting message buffering to only one unreceived message per tag/process at a

time.

Buffering serves primarily as a means of compensating for long latencies between processes, by allow-
ing the receiving process to accept data from the sender while the receiver is still performing other work,
thereby effectively hiding the latency of the communication. Rarely is more than a single buffer for each
process/tag combination used to accomplish this. Although more levels of buffering can theoretically
allow the “downstream” process to get even further behind the “upstream” process without interference or
failure, every system has some (perhaps dynamic) restriction on the amount of buffering available, so the
program must somehow be made aware of this limit and must control (or “squelch”) message production.
The equivalent of such n-buffering can be provided with single-buffering-per-identifier by simply using n
identifiers, and later in this document, even the constraint for a single identifier will be relaxed through
optimization techniques. It is also worth noting that the single buffering described here is somewhat more
extensive than the complete lack of buffering guaranteed by the MPI standard for the mpi_send and
mpi_receive primitives.

This description of identifiers and items has glossed over the fact that, for message passing, part of the
identifier associated with an item—i.e. the process ID—does not just identify the item, but also identifies
the process which is allowed to catch it. This is a valuable property in a high-latency environment,
because an item can begin moving toward its target even before that process explicitly tries to catch it,
thereby hiding latency. Still, shared memory semantics provides different benefits by not requiring that a
single target be identified, in that demand-driven programming (e.g. where processes compete for data
from a common pool or queue) is simplified. To provide the new model with the benefits of both message
passing and shared memory, the identifier will now be broken into a name, which identifies the item, and a

target set, which contains the names of processes which are allowed to catch the item. This target set



augments the expressiveness of both shared-memory and message-passing communication. The contents
of the set will be specified when the item is tossed, based on the needs of the algorithm rather than the
underlying hardware support.

Summarizing, one can now imagine processes as executing in a sea of items, each of those items having
a name and a set of potential targets. The items with only one potential target will benefit by gravitating
toward that process to be ready if/when the catch primitive eventually executes. An operational descrip-
tion of what happens when a process tosses or catches an item—i.e. whether the data is copied to/from
the process or simply accessed where it is—has been intentionally omitted, but a process which catches
an item is assured to see it as it was when it was tossed. As a result, an observer watching processes
toss and catch items will not be able to distinguish between shared memory and message passing, but

the advantages of each has largely been preserved in this model.

B. Portable process model

The derivation of a process model will be driven primarily by the desire to make parallel program design
scalable, which we define as the property that it be possible to analyze potential program behavior while
limiting the scope of the analysis to a small number of processes at any one time. Traditional parallel pro-
gramming does not generally have this property, in that an understanding of the possible behaviors of any
process requires consideration of all possible interleavings of important (externally visible) events from
that process with those from other processes, leading to a combinatorial explosion of possible interleav-
ings which must be examined, made even worse by chains of such interactions which may be arbitrarily
long.

To prevent such chains of interactions, the interleavings of externally-visible events in even two different
process executions must be made unimportant. Put another way, it must be possible to reason about all of

the operations (externally visible or not) within a process execution independent of other process execu-



tions. This is nearly equivalent to stating that any schedule of process executions has an equivalent sequen-
tial schedule—i.e. one in which only one process executes at a time—and this property is commonly
known as execution atomicity. (Programs with this property have the added advantage that they do not
depend on any certain number of processors, and can run on as few as one processor by serializing the pro-
cess executions.) A long-known theorem from the database community[9] holds that a set of transactions
(i.e. process executions) will have such a property if and only if each is “two-phase”, where a two-phase
transaction is one which does not acquire any further shared resources once it has begun to divest itself of
shared resources. In the case of our model, the most obvious shared resources are the items described in
the last section, so a program will seemingly have the desired property if, for each process execution, all of

the toss operations (if any) are preceded by all of the catch operations (if any).

In fact, even this step is not quite sufficient to achieve scalable parallel program design, because atomic
transactions can still deadlock, and the order in which different processes catch their items may affect
whether or not those processes can deadlock. That is, deadlock itself is a non-local property. This could be
remedied by mandating a runtime system to watch for deadlocks and to “back out” (i.e. terminate) dead-
locked transactions, but such complex runtime support is out of character. Instead, we insist that the pro-
cesses not specify the order in which they will catch items, but that they ipstead just provide a set of the
names of all of the items that will be needed, called a catch set. A process will not be initiated until and
unless all items named in the catch set are caught. This also removes the need for an explicit catch prim-
itive.

In addition to items being caught, there is another less obvious class of shared resource needed by these
processes. Because of the restriction that a given name can be used for at most one item at a time, unused
item names are also effectively shared resources, so a process must also ensure that names to be used for

tossing items are available (i.e. unused). Rather than treating unused item names as a special case, this



problem is solved by simply making items indestructible. In other words, even if a process just wants to
toss an item, it must first catch an (empty) item with that name, by listing it in the catch set. Likewise,
even if a process just wants to catch an item, it must later toss an (empty) item with the same name.

Ttems which have not been explicitly tossed when a process finishes are automatically tossed.

These restrictions on process execution may seem to be rather extreme, troublesome, and inefficient.
Programmers may not feel comfortable with dividing process executions into two-phase transactions, or
tossing empty data containers only so that they can be reused. The model may seem less burdensome,
however, when one realizes that processes have been become very similar to subroutines, with the catch
set being analogous to the argument list. Like a subroutine, these processes have full access to all of their
“arguments” (i.e. data items) when they begin execution, and can read or write those “arguments” during
execution. Unlike a sequential subroutine, these processes can make their “arguments” available to other
entities one at a time via toss. rather than keeping control of them all until completion. As each item is
tossed, the process assigns it a set of potential targets, and a new process can start up whenever all of its
arguments (i.e. items) are available to it. A process can iterate by simply targeting all of its items back to
itself, thereby allowing itself to start up again immediately.

Carrying this analogy to subroutines a step further, we assign a usage to each item name in the catch set
for each process. A usage is either: IN, which means that the process can read the data in the item but will
not modify it; OUT, which means that the process can deposit data into the item, but will empty the item
(if not already empty) when the process starts; INOUT, which means that the process can both read and
write the data in the item; or NODATA, which means that the process cannot read or write the data in the

item. (NODATA items are used only for their target sets, to control when processes can start.)

The conditions which must be true for a process to execute (also known as the safety condition) have

been described—i.e. whenever, for all of the items named in the process’s catch set, the process is listed in



that item’s target set. The liveness (or progress) condition—i.e. the circumstances under which a process
must execute—would most sensibly be “if a process meets the safety condition (i.e. it can execute), then it
must eventually execute”. However, if two processes need the same item, having one process execute will
make the other so that it cannot (immediately) execute, so the rule is made slightly more precise and com-
plex: For all processes which meet the safety condition and which need to catch the same data item, one
of them must eventually execute. In the trivial case, this reduces to the sensible rule stated above. No fair-

ness of access to a particular data item is implied or enforced by the model.

C. Buffering, broadcasting, and multiple readers

Many important optimizations become possible if a process declares one or more of the items within its
catch set as predictable x, where x is some target set. The declaration is a promise by the process that the
itern will always be tossed within a finite amount of time after the process begins executing, and that the
item will always be given the same target set, i.e. x, when it is tossed. Only items with either IN or
NODATA usage can be declared predictable. With this information, a scheduler or runtime system can
play some important optimizing tricks. For example, the scheduler itself can toss the item when the pro-
cess begins, since it knows what the target set and data values will be, while suppressing any “real” toss
for the item from the process. This will instantly make the item available to subsequent processes listed in
the target set. To illustrate the power of this optimization, two simple scenarios will be considered.

The first scenario consists of two processes, called Producer and Consumer. Producer has a catch set
containing item A with OUT usage, Consumer has a catch set containing item A with IN usage, and Con-
sumer declares A as “predictable {Producer}”. Assume a starting case where item A has a target set of
{Producer}. Producer begins running, writes data into item A, tosses A with a new target set of {Con-
sumer}, and finishes. Consumer now starts, and perhaps even before it executes its first instruction, the

scheduler tosses a new item A with target set of {Producer}. This allows Producer to run again, starting to



put new data into the new item A, even while Consumer is still reading the last version. There are now
effectively two copies of item A: that is, item A has effectively been double-buffered. Note that the sched-
uler might very well opt, in a shared-memory environment, not to prematurely toss A back to the Producer
until the Consumer has finished with the item to avoid allocating a new item buffer, as long as the liveness

condition is met. Either implementation is valid, since it follows the stated semantics of the model.

The second scenario consists of four processes: Producer, Readerl, Reader2, and Reader3. Producer has
a catch set containing item A with OUT usage, and the other three processes have a catch set containing
item A with IN usage. Readerl declares A as “predictable {Reader2}”, and Reader2 declares A as “pre-
dictable {Reader3}”. Again, assume a starting case where item A has target set of {Producer}, and again
Producer runs, writes to A, and tosses A with a new target set of {Reader1}. Now, the moment Readerl
begins, the scheduler can toss A to Reader2, and when it begins, the scheduler can toss A to Reader3.
Three processes can be reading the same version of A. If the three readers are on different distributed-
memory processors, this is akin to (and perhaps implemented as) a broadcast. If the three readers are on a
shared memory machine, this is akin to three processes with read locks sharing the same memory, all

while preserving the serializability of transactions.

D. Functional specifications

Processes have been described as performing transactions, as starting and completing, and as acting very
much like subroutine executions. In many languages, it is possible for subroutines to carry internal state
from one invocation to the next—e.g. using static variables in C, or SAVE variables or COMMON blocks
in Fortran. We forbid it in this model, first because it is simply not needed (since all of the internal state
can be treated as yet another data item which can be tossed back to the process at the end of each itera-
tion), and second, because this hidden state can complicate analysis (since it can make each process execu-

tion dependent upon the entire history of the process instead of just on information acquired during the



current execution). From a practical standpoint, lack of internal state also greatly eases process migration
between executions. It should be noted that data like file pointers and random number seeds are considered

state, and can only be carried between executions as other state must be—i.e. via a data item.

This leaves the question of input and output. Although processes could conceivably be allowed to use all
standard traditional constructs for file and device I/O, this could allow processes to interact with each other
(on purpose or accidentally) while bypassing the constructs developed so far, thereby nullifying the advan-
tages of the model developed here. A more clean notion is to treat files just as other data items are
treated—i.e. to be caught before using, and tossed before others can use them. For external devices, we
will later assume that the devices themselves are capable of catching and tossing data items, so pro-

cesses can interact with them indirectly through data items, but other solutions are admittedly possible.

Based on the above and the assumption that processes are expressed in deterministic languages, once a
process begins executing, its behavior can depend only upon the values of the data items it catches with
IN or INOUT usage. Furthermcre, the only behavior it can exhibit that can ultimately affect the possible
behavior of other processes is the new values it writes to its data items (i.e. the ones with OUT and INOUT
usage) before tossing them, and the new target set which it assigns to each item as it is tossed. In other
words, a program in this model is completely specified by giving the set of items (i.e. their names, initial

values, and initial target sets), and the following specification for each process:
(1) a catch set containing item names
(2) a usage (i.e. IN, OUT, INOUT, or NODATA) for each item in the catch set
(3) “predictable” declarations for items in the catch set to which they apply

(4) a description of the resulting target set for each item and the resulting data values for OUT

and INOUT items, as a function of the values found on the IN and INOUT items.

As long as this specification is met, the programming language used to implement the processes, the



order or timing in which the processes toss their items, and the kind of architecture on which the pro-
cesses run, are unimportant. A process which enters an infinite loop (“diverges”) before it tosses one or
more of its items can be specified just as one which does toss those items, but with an empty target set,
since in either case, no other process may catch the items to access their contents. (Due to the halting prob-
lem, it may not be possible to prove that the specification of a process and the partial function imple-

mented by a programming language are equivalent, but that does not hinder the validity of the approach.)

IV. F-Nets

The description above focused on individual processes, but by its conclusion, each process had been
reduced to a fairly concise specification. This section will now describe the model much more formally
and abstractly, by treating each process as being equivalent to its simplified specification, with the aim of
describing the interactions between these processes. There are, in fact, cases where a single process in the
above description must be modeled with more than one of its counterparts (called transitions) in the
description to come, but it is a fairly straightforward exercise to recognize the equivalences. The formal
description helps to illustrate the kinship between this model and Actors{1], Petri Nets[12], Turing
Machines, Finite State Machines, dataflow models, Unity[3], and CCS[11]. The model was originally
developed as a refinement of the Large-Grain Data Flow (LGDF) parallel programming approach[2], and
early versions went by the name LGDF2[7]. The formal description here is somewhat simplified from its
original incarnation[6] primarily because some of the elements of the original description have been
passed off to the language level, to be described in a later section.

The model will be described in three parts: its syntax, an operational semantics, and an axiomatic
semantics. Due to the different context, the terminology changes rather abruptly here from the previous

section, with the following approximate analogs: processes become transitions, data items become frames,



a target set becomes a control state, and the names and usages in a catch set become heads.

A. Syntax

An F-Net can be considered as being similar to a Turing Machine, having a (possibly-infinite) tape, sep-
arated into frames. Each frame contains a mutable data value, called the data state of the frame, and a
mutable color, called its control state. The set of all possible data states is called Z, and the number of pos-

sible colors (other than white) is called p.

Along with the tape, the F-Net consists of a possibly-infinite set of transitions. Associated with each
transition is a set of colored (non-white) heads. Each head is permanently attached to one frame—i.e. the
tape does not move relative to the heads. Each head is either a read head, a write head, a read-
write head, or a nodata head (i.e. a head having neither read nor write capability). The heads for a
given transition are enumerated from 1 to n, where n can be different for each transition. No two heads
from the same transition are attached to the same frame. In figure 1, the transitions are shown as circles,
the heads as lines, the frames as squares, and the colors as shadings (green shown as black). Arrowheads
represent whether the head is read (at the transition end), write (at the tape end), read-write (at

both ends), or nodata (neither end).

Fig. 1. Sample F-Net in the Turing Machine style

Each transition has an associated firing function, which can be visualized as a table. If the number of

|2

read and read-write heads on the transition is r, then the table has r!“~! entries, indexed by the possi-



ble combinations of r symbols under those heads. Each entry contains n colored (possibly white) sym-
bols—i.e. one symbol corresponding to each head. Table 1 shows a sample firing function for transition W

in the previous example, assuming £ = {e,x,i,t}.
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TABLE 1. Sample Firing Function for Transition W

Any read or nodata head can be declared “predictable ¢” which is a declaration that the symbol cor-
responding to the head in all of the firing function entries has the color c. In the example, head 2 of W
could be declared “predictable green”.

More formally, an F-Net can be described in set notation. An F-Net Q of order pe N is a 3-tuple
(X, F, T) where I is the Data Alphabet, F is the set of frames, and T is the set of transitions. (The colors
are represented by the integers O through p where O represents white and 1 represents green.) Each transi-
tion te T is a7-tuple {a, R, W, X, ¢, B, ) where

a € N is the number of heads (or “arity”),

R c [1,a] is the set of readable heads (i.e. having read or read-write usage),

W < [1,a] is the set of writable heads (i.e. having write or read-write usage),



K € [1,a] = [0,p] is the frame color for predictable heads,
de sIRl 5 Wl [0,p]¢ is the firing function,
B e [1.a] - F is the binding of each head,

v € [1,a]l = [1,p] is the color of each head.

B. Operational Semantics

An F-Net works as follows. The machine begins in an initial state consisting of a predetermined symbol
i, and the color green on each frame f. Then, repeatedly, a ready transition is located (subject to the live-
ness rule below) and evaluated until there are no more ready transitions. A ready transition is defined as
one for which each head is the same color as the frame to which it is attached. Evaluation (or firing) con-
sists of finding the entry in the table corresponding to the symbols under the read and read-write
heads, and replacing the color of the frames under all heads with the color of the corresponding symbol
from the table entry. For each write and read-write head, the symbol (i.e. data state) of the frame is also
changed to the corresponding symbol from the table entry. (Note that for read and nodata heads, the
symbols in the table serve no purpose other than as place-holders for the color at those positions, and that
for predictable heads, even the colors in the table are superfluous.)

The liveness rule states that if a transition is ready, then either it or some other ready transition which
shares a frame with it must be evaluated eventually (i.e. will not be eternally preempted) in the repeat cycle
described above.

This semantics suggests that only one transition is evaluated at a time, and if transition evaluation is
modeled as taking no time (as they are here), this is sufficient. However, when transitions are implemented
as processes as they were in an earlier section, then they may not only take time, but it may not be possible
to determine how much longer they will take. That is, the semantics above would require that a scheduler

know when a process was finished executing, or more exactly, when the process was not going to perform



any more tosses, so that the next ready process could be initiated. This means that, to deal with such a
process that was computing, a correct sequential scheduler would be required to either solve the (impossi-
ble to solve) halting problem, or conversely, to conceivably execute forever waiting for it to finish and thus
contradict the required liveness properties.

Fortunately, the operational semantics above can be shown to be identical to these revised semantics:
“An F-Net works as follows. The machine begins in an initial state ... . Then, repeatedly, a ready
transition is located and initiated. A ready transition is .... . Initiation means changing the color of
all the frames under the transition’s heads to white, and then beginning evaluation of the transition.
Evaluation ...”

In this case, the scheduler does not need to wait for one transition to finish its evaluation before initiating
the next. Changing all of the transition’s frames to white is effectively identical to catching items, as
described earlier, and so preserves the two-phase (and therefore atomic) nature of the transition evalua-
tions.

There is no need to consider the relative position of frames on the tape, so F-Nets are often represented
graphically with the frames separated into disjoint rectangles. Although the firing function is rarely repre-
sented graphically, the colors which might be assigned to each head are often represented by colored dots
near the connection between the line (head) and the tape frame (rectangle). Read and nodata heads with
only one colored dot are implied to be predictable. In a black and white medium without shading, colors
are sometimes represented by adding a “/ ¢” suffix to the colored entity (i.e. dot, head, or within the firing
function), where c represents the color (e.g. g for green, b for blue, r for red). See figure 2 for a more

standard representation of the F-Net from figure 1.

C. Axiomatic Semantics

Instead of considering an F-Net as an operational machine-like entity, it can be considered as a means of



Fig. 2. Same Sample F-Net in Standard Form
describing a set of computations—i.e. those which can result from its execution. The specification of the

semantics then becomes the characterization of a relationship between an F-Net and the elements of that
set of computations. Here, this characterization will take the form of a set of axioms.

An F-Net computation is effectively a trace of the important states and events which occur when follow-
ing the operational semantics in the previous section, along with the causality between these states and
events. A computation takes the form of a directed bipartite graph which consists of state nodes (repre-
sented by squares) and event nodes (represented by circles) connected by directed numbered edges (lines).
Each event node corresponds to a transition in the F-Net, and represents a firing of that transition during
the computation. Each state noce corresponds to a tape frame in the F-Net, and represents a state of that
frame at some point during the computation. Each state node is labeled with a control state (i.e. color) and
a data state (from X). The five axioms which relate the computation and the F-Net follow, each accompa-
nied with a description of how the axiom relates back to the operational semantics:

Initial Conditions: Each tape frame f in the F-Net will be represented by at least one state node in the
computation graph, from which any other state node for tape frame f can be reached by following
directed arcs. This node will have a control state labeling of green and a data state labeling of 1y
Operational explanation: Each frame starts with a control state of green and a data state dictated by

L
Atomicity: Each state node in the computation graph will have at most one incoming edge and at most

one outgoing edge.



Operational explanation: Each frame is accessed by at most one transition at a time.
Firing: If transition ¢ in the F-Net has n heads, then for every firing node corresponding to transition ¢:

(a) There will be n incoming edges, numbered 1 to n, and n outgoing edges, numbered 1 to n, where
each edge numbered i will be attached to a state node corresponding to the tape frame under head

i of transition .
Operational explanation: Each transition evaluation can affect all of the frames under its heads.

(b) The control state labeling of each state node attached to an incoming edge numbered i will be the

same as the color of head i of transition ¢.

Operational explanation: A transition can evaluate only when all of its heads are attached to

frames of the same color.

(c) If head i of transition ¢ is a nodata or read head, then the state nodes attached to edges num-
bered i will have identical data state labellings. The data states of the state nodes on all other edges
and the control states of the outgoing edges will correspond to a single line in the firing function
table of transition ¢, where the incoming edges correspond to the “index” columns and the outgo-

ing edges corresponds to the “content” columns.

Operational explanation: nodata and read heads do not affect the data state of their frames.
The frames under all heads are assigned a control state dictated by the
firing function, and all frames under writable heads are assigned a data

state from the firing function.

Liveness: If there is some transition ¢ and some set of state nodes corresponding to the tape frames
under its heads such that the control state labeling of each state node corresponds to the color of the
head of transition ¢ attached to that frame, then at least one of those state nodes must have an outgoing

edge.



Operational explanation: A transition will remain steadily ready for at most a finite amount of time
before evaluating.

Time: The graph will be acyclic.
Operational explanation: Causality moves with time, which moves in only one direction.

See figure 3 for an example of a partial execution graph for the F-Net in figure 2. Rather than label each

state node with the appropriate frame, we here organize all state nodes referring to the same frame to be in

the same horizontal line.

Fig. 3. Sample execution graph (partial)

The axioms can be defined more formally by expressing the basic form of a computation in set notation,
and rewriting the axioms to relate the mathematical entities of the F-Net and the computation. (Readers

not requiring this rigor can safely skip to the next section.)
Def: A computation X, for F-Net @ = (X, F, T) with initial marking v:(F = X) is a 6-tuple
(E, S,°E, E°,1,0) where
E is a set of events
S is a set of states
°FE ¢ S x E is the set of “before” edges,
E° c E x S is the set of “after” edges,
1:(E — T) is an transition event labeling,
¢:(S — F) is a frame state labeling,

such that functions



h:E° U °E — N, called a head labeling
®:5 — [0,p], called a control state labeling,
&):S — X, called a data state labeling,
exist, and axioms 1 through 10, described below, hold.
The axioms will be based on the following notation and definitions.

Notation: ¢(s), ¢(s) and q~>(.s) are usually written as 5, § and 5, respectively. Implication, often repre-

a

b

gle subscripted element in angle brackets represents a sequence showing a representative element. Adding

sented a = b, is here represented = . Fixed sequences, like tuples, are shown in angle brackets, and a sin-

a vector symbol over a set of unique integers (e.g. W) creates an ordered sequence from the set, and a
function applied to a sequence Yyields a sequence consisting of the function applied to each element—i.e.
f((x], Xoys ooos xn)) = (f(xl), f(x2), - f(xn)) . Element x of tuple y is represented Xy

Def: The relation x « y between two nodes of a computation (i.e. x,y € EU S), pronounced “x pre-
cedes y”, is defined to hold if and only if x and y are the same node, or you can get from x to y by following
edges—i.e. x « y iff

(x=y)v({{x,z) € E°U°E)A(z«Y)
Def: The notations n° and °n, called the successor and predecessor sets of node n, respectively, are the

nodes just after and just before 1 in the computation— i.e.

°n is defined as {x|{x,n) € E°U°E}
n® is defined as {y|(n, y) € E° U °E}

Def: The set S, called the initial states, denotes the set of state nodes in the computation (if any) which
precede all other state nodes having the same name — i.e.
(se SASESAF=5)>s«s

Def: The notation x g y » pronounced “o bijectively maps X to Y, is defined to hold if and only if o



maps the set X onto the set Y—i.e. iff
(Vye Yaxe X|ox) = y) A(Vx, x' € X[(0(x) = ox")) = (x = X))

The five axioms which define the valid computations ¥, , producable by F-Net Q:
1) Initial conditions

Each frame in F has an associated initial state in S with a control state of green (i.e. 1) and a data state

equal to the initial state of the frame— i.e.
ferF
Ise S|s=fArs=1A5=1f)

2) Atomicity
Each state node has at most one incoming edge and one outgoing edge — i.e.
se S
[sel<1Alosi<1
3) Firing

a. The incoming and outgoing edges of each event node will be numbered for the heads associated with

the transition corresponding to that event—i.e.

h h
%¢ & [l,a,c(e)] Ne® & [l’ar(e)]

c. Each of the outgoing edges will be attached to a state node representing the same tape frame as that

under the corresponding head—i.e.
(e,sye E°
Brey(h({e))) =35

d. Each of the incoming edges will be attached to a state node representing the same tape frame as that

under the corresponding head, and having the same color as the head—i.e.
(e,sy e °E
Boge) (e, 0)) = 5 ATy ((Se, 5))) = 5

e. The data states of the writable result state nodes and the control states of all the result state nodes are

dictated completely by the data of the incoming state nodes and the firing function of the transition associ-



ated with the event node—i.e.
by By n = B A5 = B [T
(Fp = BURY AW =B (WA= Bt([l,at])

/\(rj,e)e°E/\(e,wj)€E°/\<€,Sj>€ E®

¢‘c(e)(;1’ 7‘2, s = (ﬁ/l, ﬁ)z, o SS9 e s'at)

f. The data state under heads having no write permission will not be altered by this event—i.e.

(e,s) e E°A(s,e)e PEAnh({e,5)) =h({s,e)) g W

s=s

g. The control state for predictable heads will be as predicted—i.e.
(e, s) € E° Ax(h({e, $)))#0
§ = x(h({e, 5)))

4) Time

The computation graph is acyclic—i.e.
XCYAY«X
xX=y

5) Liveness
If there is a set of state nodes after which an event node could be added, then at least one of those state

nodes will have an outgoing edge—i.€.

— —
(Ej) =B ([1.a]) A (S'J-) =v,([1.a])

:—]jl‘sjl;éO

V. Observations and Implementations

This section contains various insights and comments about the F-Nets model. Though formal proofs will
not be provided here, proofs of some of these properties can be found in related work[6]. First, some of the
properties of the model relating to non-determinism are covered, followed by its relation to other computa-
tional models, then implementation strategies are briefly mentioned, and finally some observations on the

relationship between F-Nets and structured programming are explored.



A. Non-determinism

By removing the state nodes from a computation such as that in Figure 3 (i.e. by merging the incoming
and outgoing edges of each square node into a single edge), the computation becomes a partial ordering
(directed acyclic graph) of event nodes, where each node represents the evaluation of a (firing) function.
Looked at in this way, the computation as a whole can be viewed as the composition of functions, imply-
ing that the computation is itself represents a function, being evaluated on the initial state represented by 1,
which can be considered its argument. Re-inserting the state nodes shows that they can be regarded as data
being passed from one function evaluation to the next, implying that the data and control state (i.e. value
and color) of each state node is uniquely determined by the structure of the computation and t. Thus, the
functions ¢ and (I) in the last section are uniquely defined for a computation. Incidentally, % is also unique,
since the head represented by each arc can always be determined by the frame and transition labellings of

its end nodes. This explains why these three functions are not part of the computation itself.

However, the computation itself is not necessarily uniquely determined by the F-Net and the initial state.
Such nondeterminism can be a desirable characteristic as long as it is not introduced by accident—for
example, to make the computation flexible enough to take timing differences into account to create “first-
come first-served” behavior. Potential non-determinism in an F-Net can be detected syntactically, so tools
can allow the programmer to verify that it is desired before the program is run. Specifically, an F-Net may
be non-deterministic if and only if it contains two (or more) transitions which have like-color heads on the
same frame (say s/) and those same transitions do not have differing-color heads on another “shared”
frame (say s2). This is easy to see: If each frame has at most one head with each color attached to it, then
the color of the frame will always uniquely determine the next transition that can evaluate using that
frame, so the event node following each state node in the computation will be uniquely determined,

thereby uniquely determining the computation as a whole. Even if some frames have multiple heads of the



same color, as long as some other frame dictates the order in which the corresponding transitions must
evaluate, the reasoning still holds.

Note that the above lists the conditions under which an F-Net “may be” non-deterministic. Such F-Nets
may also be deterministic, but this may not be syntactically apparent. For example, even if multiple transi-
tions share a single frame with like-colored heads, they may each be attached to other disjoint frames with
other heads, and the internal workings of the F-Net as a whole may conspire to ensure that these other
frames allow only one of those transitions to be ready at a time. Also, different computations can represent
identical functions, due to commutativity, associativity, or other syntactically unapparent equivalences.

Because non-determinism is always associated with like-colored heads on a shared frame, it is easy and
efficient for tools to trace it and to replay these programs with minimal overhead. Specifically, by attaching
a log onto each frame having like-colored heads, and recording the order in which the associated transi-
tions access those frames (which can take as little as one bit per evaluation of those transitions, and no bits

for other transitions), the computation can be reconstructed at a later time with the logs and 1.

B. Relationship to Other Models

The description of the F-Net model has been based loosely on the Turing Machine. Likewise, it can be
interpreted as a Turing Machine coordination model. That is, each transition could be considered a multi-
tape TM, and (given some way for a TM to signify the tossing of a tape) each F-Net frame could be con-
sidered as a TM tape being passed from one TM to another.

A kinship between F-Nets and Petri Nets is suggested by the similar appearance (though the notations
are confused). Specifically, an order p F-Net (i.e. one whose frames can collectively assume up to p colors)
with only nodata heads (and therefore only predictable heads, since each firing function can contain
only a single table entry) can always be expressed as a Petri Net by mapping each F-Net transition to a

Petri-Net transition and each F-Net frame to p Petri-Net places. Each head in the F-Net becomes two arcs



in the Petri Net: an input arc from the place representing the color of the head, and an output arc to the
place representing the predictable color which the head assigns to the frame. The initial marking of the
Petri Net is with one token on each “green” place. The ability to represent more complex F-Nets as Petri
Nets depends upon the ability to represent each of the firing functions, which may not be useful, nor even
be possible in the general case where some of the firing functions are partial recursive and/or X is infinite.

The presence of data in the F-Net model also makes it similar to dataflow or functional models. How-
ever, unlike these models which utilize simple arcs that are usually represented with single- (or zero-)
assignment variables within languages, the frames in an F-Net represent updatable containers more like
variables in traditional imperative languages. Also, F-Nets more naturally accommodate non-determinism.

Each frame in an F-Net can be considered as a finite state machine (with the state represented by the
color) which also carries data, and these are interconnected with (partial) functions or Turing Machines.
This suggests similarities and differences between F-Nets and Milner’s CCS. Both can be considered as
composing finite state machines, and upon atomic events which occur only when the states of different
machines occur in pre-determined combinations. In both, these events in turn cause or allow each of the
involved machines to perform a transition. However, in CCS, data transformation events are coupled with
the machine transitions, whereas in F-Nets, they are coupled with the atomic events between the machines.
It seems plausible that much theory could carry over from CCS to F-Nets.

By restricting F-Nets to use only green control states, a model similar to Unity[3] emerges, although the

latter has some additional fairness constraints and uses guards to take the place of control states.

C. Real-World Implementation
Because F-Net transitions can be implemented in standard programming languages (augmented by some
special constructs to handle “toss” statements), the primary implementation questions come in how to

efficiently schedule transitions and migrate frames—in other words, dealing with control and data state.



Rather than maintaining control state separately for each transition, it is often more efficient to simply
reflect their presence using a kind of reference count associated with each transition, That is, each transi-
tion holds a count giving the number of its heads which are attached to a frame of the wrong color, and
each time a transition is initiated or executes a toss statement, the appropriate reasons counts for related
transitions are adjusted (within a critical section), and new transitions are scheduled (i.e. initiated) when-
ever their reasons counts reach zero. In a shared-memory environment, the granularity of critical sections

can be reduced (i.e. their number increased) by static analysis of the F-Net’s topology[8].

In distributed memory environments, toss statements associated with write or read-write heads
often map straightforwardly into message sends which pass the data state associated with the frame to the
next process that will read it. There are, however, some circumstances where the next process to read the
data is not immediately known. [n that case, the data state can either be left with the tossing transition to
be requested later when the reader is finally determined by the scheduler, or it can be forwarded to a loca-
tion which is physically closer to all potential readers. Cooperative Data Sharing (CDS) is a simple sub-
routine package which embodies the communication requirements of F-Nets without the dataflow-like
run-time semantics[5]. Although a major goal of CDS was to aid in the implementation of F-Nets on real
computers, it can also be used as a standard communication substrate for a variety of other purposes. In
message-passing environments, it serves a role much like MPI and PVM, but it also works efficiently in
shared-memory environments because of the lack of copying allowed by its semantics[4]. Like F-Nets,

CDS employs a logical model which may be expressed in different physical implementations.

Using the above techniques, tossing a frame to another transition on the same processor has almost
negligible cost—it often requircs only that a reasons count be decremented, and that the other process be
initiated (akin to a subroutine call by the scheduler). Often, no data needs to be copied, since the frame

data can be accessed in place by both the tossing and catching transition. This has the important result that



the granularity of a program can be dynamically increased at execution time, so one can theoretically write

a program once and run it efficiently on different numbers of processors.

Ensuring that a particular scheduler and runtime system actually implement the axioms is itself a some-
what theoretical problem. This can be performed by defining a partial ordering over the set of all possible
computations (i.e. a partial ordering of partially-ordered sets) based upon a computation being more well
defined when it has more nodes or when those nodes are more well defined, then showing that the runtime

system monotonically advances the computations in this p.o., and that the fixpoints satisfy the axioms[6].

D. On algorithms, computations. structured programming

Definitions for the term “algorithm” are rare, but Knuth (for example) once defined one as a set of rules
which gives a sequence of operations for solving a specific kind of problem[10]. Using common vernacu-
lar, we will call such a “sequence of operations” a sequential computation. As already mentioned, this def-
inition of algorithm is somewhat outdated, and inapplicable to parallel environments, but it elicits another
question: What kind of representations do we use for such algorithms, in order to represent sequential
computations? Back when Knuth originally expressed this definition, his algorithms consisted of simple
steps, each representing some mapping of state, built into short sequences, and punctuated by conditional
and unconditional branch statements. Programs of the time looked the same. To compute, one followed the
steps, and the computation (sequence) unraveled from it like a piece of spaghetti, leading some to eventu-
ally call it spaghetti coding. Working backward, such algorithms can be considered as raveled-up compu-
tations. That is, instead of representing the entire computational sequence, the algorithms saved space and
became more general by folding up the algorithm and unfolding it as it was executed.

More recently, spaghetti coding has given way to structured programming, a more organized method of
expression that typically uses indentation to increase the dimensionality of the program slightly to visually

provide another measure of closeness between two steps. In addition to the physical closeness of two steps



in a sequence, there is also the implied closeness of steps terminating indented blocks (such as those at the
beginning and end of loops or conditional branches). As a result, when a computation unfolds or unravels
from the algorithm, operations which are close in the computation are also visually close in the algorithm.

It allows the algorithm to more visually represent the computation.

In parallel programming, parallel computations have long been recognized not as sequences, but as par-
tial orderings of operations[13], and partial orderings are representable by directed acyclic graphs, or
DAGs. In traditional parallel programming, the correspondence between the “parallel algorithm”
(expressed as a set of communicating sequential algorithms) and the resulting parallel computation(s) is
often not apparent. (Also, because it is so much easier to express ordered than non-ordered operations
when using this method of programming, it often coerces programmers to order logically-unrelated opera-

tions, even when it is not to the advantage of the programmer nor the computer.)

Computations in the F-Net model are DAGS, or partial orderings of operations, and if viewed correctly,
they exactly represent an unfolding of the associated F-Net. For example, if one were to take the computa-
tion in Figure 3 and fold each event node so that the incoming state nodes fell exactly on top of the outgo-
ing state nodes, one would eventually end up with a picture similar (and topologically identical) to the F-
Net shown in Figure 1. Such folding is familiar to Petri Net analysts. We believe that these properties give

strong argument to considering F-Nets as structured parallel algorithms.

VI. Software Cabling

Software Cabling (SC) is a visual programming language for building very large F-Nets. An SC pro-
gram effectively compiles into an F-Net while ensuring that the correspondence between the SC program
and the F-Net is always apparent. This allows SC to inherit many of the desirable properties of the F-Nets

model while compensating for some of F-Net’s apparent deficiencies for programming.



The terminology which is used to describe SC is based upon a hardware analogy. In the first subsection,
terminology and representation of the basic constructs will be described. Subsequent subsections will

describe modularization, first-class modules, objects, templates, arrays, and data parallelism.

A. Basics

An SC program is constructed of modules. Each module has a body, which tells it how to act, and an
interface, through which it interacts with its environment. The interface consists of one or more pins, each
with a name, a permission (read, write, read-write, or nodata), a data type, and a list of identifi-
ers called a signal set. There are two kinds of modules: chips and boards.

A chip is meant to be analogous to a custom CPU chip, and is the only construct in SC which transforms
data. In the real world, it is a program (or subroutine) like those discussed in section III, and its body is
constructed with tools outside the realm of SC, but SC logically regards each chip as acting in a specific
deterministic way when initiated: The chip initializes all of its internal data, then reads one data item from
each of its read or read-write pins, then computes for some amount of time and writes one data item to
each of its write and read-write pins. In addition, for each of its pins, it posts a signal from the signal set of
that pin. (If a signal is not posted for a pin, a special “bottom” signal is imagined to be posted.)

A board can be considered as a flat surface upon which other components are mounted. The body of a
board is specified in a schematic-like diagram. The primary role of a board is to specify how other mod-
ules which are mounted upon it will interact.

The two basic components which are permanently mounted upon boards are called sockets and memo-
ries, and these are connected by wires.

A socket is represented in the board diagram as a circle, and is designed to hold a module—i.e. either a
chip or a board. To this end, the socket consists of a set of receptacles, each capable of accepting one pin of

the module interface. Each receptacle has a name, a permission, a data type, and a signal set—just like a



pin—and will only accept a pin of the same name, data type, and signal set. The permissions of the recep-
tacle can typically be more general than that of the pin, as shown in table 2. The socket circle is labeled

with the name of the module which is inserted into it.

Receptacle permissions Accepts pin with permissions
read-write read-write,read,write,nodata
read read, nodata
write write
nodata nodata

TABLE 2: Kinds of pins accepted in a receptacle

A memory is represented in the board diagram as a rectangle, and is designed to hold one data item and
one color, both of which may change during execution. The type of data item which a memory may hold is
described by a data type associated with the memory. The initial data state of the memory is initialized to
standard default values, which can be over-ridden by annotating the memory rectangle with “=const”
where const is a constant—i.e. a literal numeric, character, or record constant in a standard form, or of
the form “<name>" in which case the constant associated with identifier “name” is found in a special

repository associated with the program, called the program data base (pdb).

Wires are represented in the board diagram as colored lines, and they connect each of the receptacles of
each socket to a (different) memory. Each line is labeled with the name of the receptacle which it connects,
and has arrowheads to represent the permissions of that receptacle: on the socket end for read, on the
memory end for write, on both ends for read-write, and on neither end for nodata. The signal set
of the receptacle is represented just inside of the memory rectangle, where the wire connects to it, and each

of the identifiers in the signal set is colored.

If chips are placed into all of the sockets on a board, the semantics are almost exactly those of the F-Net
with the same appearance. The memories act as tape frames, the wires as heads, the sockets as transitions,
and the chips as firing functions. The only difference is that a chip now posts a signal to each pin instead of

providing a color, and the new color of the memory is determined by the color of that signal name in the



signal set within the memory. (Bottom signals always result in colorless memories.) This effectively
parameterizes the colors, resulting in the ability to use a single chip in more varied circumstances than a
similar firing function

Table 2 was designed specifically to guarantee that SC programs appear as F-Nets, which is the reason
that a write receptacle cannot accept a nodata pin. If otherwise, it would be possible to run an experi-
ment that did not match that of an F-Net—specifically, initializing all of the memories for a socket, letting
the chip therein execute, then re-initializing the memories to the same values again but changing the value
for one attached to a write receptacle, and letting the chip execute again. The memory on the write
receptacle should end up with the same value both times, but wouldn’t if a nodata pin was inserted into

the receptacle.

B. Modularization

So far, there has been no mention of how a board’s interface is connected to its body. This is accom-
plished through special memories called i-memories (interface memories). Specifically, for each pin in the
board’s interface, there is one i-memory in the board, labeled with the name of the pin. The signals from
the pin are listed in a small box. called a posting table, which adjoins the i-memory rectangle. Each signal
name in the posting table has a different color, and none of them are green.

To describe the result of inserting a board into a socket, it will help to first define some terminology. If
board A is inserted into a socket on board B, board A is called the primary board, and board B the second-
ary board. Since each i-memory on board A corresponds to a pin of board A, and each pin of board A also
corresponds to a receptacle on board B which is connected by a wire to a memory on board B, there is a
correspondence between each i-memory on board A and a wire and a memory on board B. These wires
and memories on board B are culled the respective targets for the i-memories on board A.

The semantics are as follows: In all cases, an i-memory effectively shares the data state of its target



memory. The control state (i.e. color) of each i-memory is initialized to null (i.e. colorless), but whenever
the target memory of an i-memory matches the color of the target wire, the i-memory itself becomes green.
If a module on the primary board (with a green wire) accesses that i-memory, it not only steals the color
from the i-memory, but also from the secondary memory. When (if) that module posts a signal to give the
i-memory a new color, SC compares the new color with the colors of the signals in the posting table. If
there is no matching signal color, the i-memory retains the new color (as usual), and other modules on the
board which are attached to the i-memory with wires of that color may fire as usual, but the target memory
remains colorless. However, if there is a matching signal color, the i-memory becomes colorless once

again, and the matching signal is effectively posted through the target wire to the target memory.

C. First-Class Modules

The modules (i.e. chips and boards) defined previously are not actually immutable objects. Instead, they
are descriptors of immutable objects. That is, the user provides a description of the module to create, and
the socket actually creates it. These descriptors are constants, stored in the program data base along with
any other constants the user wants to store there. In the cases described above, this subtle difference was
not important because each socket was always given the same descriptor, and each board which was cre-
ated remained intact for the remainder of the program. This subsection describes other cases, where mod-

ules are treated as first-class objects.

Each socket has a special receptacle called (module) from which it reads the descriptor for the mod-

ule that it is to create. The labeled-circle representation used in the previous section is actually a shorthand

@ is shorthand for (module)

=<x>
Fig. 4. Labeled circle shorthand

for this: see figure 4.



When the wire for the (module) receptacle is the same color as the memory to which it is attached
(which it will always be in the default case above since the done signal and the wire are green), the socket
reads that descriptor. If the descriptor is that of a chip, the socket builds the chip and waits for it to become
ready, then initiates it. If the descriptor is that of a board, the socket associates the i-memories on the board
with their target memories on the secondary board as discussed in the last section and creates and initial-
izes all of the other memories on the board (unless they have been previously created, as will be described
in the next section). This may, in turn, allow other sockets to construct their modules—i.e. if a newly-cre-
ated memory (or a newly associated green i-memory) on the board is attached with a green wire to a

(module) receptacle for a socket on the board.

The (module) receptacle does not act exactly like other receptacles. First, the socket reads the
descriptor on its module receptacle, but does not actually drain the color from the associated memory until
and unless the resulting module actually has some outward effect on other memories—i.e. drains the color
through one of the other receptacles of the socket. Second, even though the (module) receptacle looks
predictable, it is so only if the module thereon is a chip. If the module is a board, the done signal is never
posted to the receptacle unless explicitly directed, as described next.

A board is permitted to have an i-memory named (module), with one signal named done in it’s post-
ing table. This i-memory naturally corresponds to the (module) receptacle on the board, and changing
its color to the color of done in its posting table will have the natural effect of causing the socket contain-
ing the board module to post a done signal to its (module) receptacle. It will also have one other side-
effect: From that point on, no i-memory for the board will ever be green again. In other words, if some of
the i-memories on the board possess color at that time, they will continue to possess color, and if modules
on the board have stolen color from some i-memories on the board, they are free to post signals and return

the color to those i-memories, but if an i-memory is (or becomes) colorless because its target memory is



the wrong color, then the i-memory will remain colorless from that point on. Once the color on all of the i-
memories of the primary board are effectively stolen back by the secondary board, the primary board will
have no further effect on its environment, even if other modules on the board are able to execute, so the
board can be “garbage collected” by the runtime system.

Simply put, posting the done signal to its (module) receptacle allows a board to finish up what it
started before disappearing, but does not allow it to start more work. The board can be (and is) considered
to have logically finished as soon as it has posted this signal. In atomic transaction terminology, this
ensures that the board is entering a shrinking phase. If the programmer ensures that the board does not
enter a second growing phase before posting this signal, the board execution can be assured to be an
atomic transaction.

A special chip called copy, provided by SC, increases the power of this feature, along with being useful
in other contexts. The copy chip has two pins: a read pin called in, and a write pin called out. Its
operation is obvious: it reads a data item from its in pin and writes the data item to its out pin. It is better
than a user-written copy chip, in that (1) it can copy any kind of data object, including module descriptors,
and (2) it can do so very efficicntly (sometimes without even performing an extra copy) because the SC

scheduler knows the desired result and can therefore optimize.

D. Objects

A board descriptor can be considered as an abstract data type, with each socket containing that board
being an instance of that type, since a board has fixed interfaces, methods (i.e. modules attached to i-mem-
ories with green wires) which can be invoked by outside actions, and hidden data (i.e. memories) to which
they control access. But funneling all accesses to one instance through one board is cumbersome to say the
least. What is needed is for a single object to be usable at different places within a network in a concurrent

fashion. The first-class modules described in the last section set the stage for this. This section finishes the



job.

Each non-interface memory on each board has an immutable instantiation level, which is 0 by default
but can be specified as some positive integer by the programmer, shown graphically as a number of lines
parallel to one or more sides of the memory rectangle. The board itself also has an instantiation level,

which is initially set to the maximum instantiation level of any memory on the board.

These instantiation levels are used by a special chip, provided by SC, called instant, which has a sin-
gle read-write pin called object and a datatype of “module” (i.e. a module descriptor). When an
instant chip fires, it reads the module from its object pin, and assuming that it is a board with a non-zero
instantiation level, finds all of the memories on the board with the same instantiation level as the board. It
then instantiates these memories, decrements the instantiation level on the board descriptor, and writes the

new board descriptor back out to the object pin.

To relieve any confusion between instantiated boards and non-instantiated board descriptors resulting
from the above paragraph, consider that the control and data states for all memories are kept in a special
globally-accessible data area called the memory heap. Instantiation then just corresponds to creation of a
memory in the memory heap and saving the address of this new memory with the memory rectangle as

part of the new (constant) board descriptor.

The constructs described here can be used to facilitate object-oriented programming. First, the program-
mer assigns an instantiation level of 1 to so-called “instance variable” memories, resulting in a board
descriptor with an instantiation level of 1 which serves as a “class”. To create an object of that class, the
user copies the class to another memory (using copy) and instantiates it (using instant), which creates
the instance variables and updates the class descriptor to an “object” descriptor. Any socket which reads
this object descriptor will share the control and data state for the instance variable memories. Instantiation

levels of 2 and greater can be used to repeat this approach in a hierarchical fashion (e.g. “class variables”,



“superclass variables”, etc.).

E. Patterns and Templates

Programming-in-the-large requires the construction of templates or skeletons which describe the inter-
actions of individual modules or objects without over-constraining the form of those modules. The con-

structs in this subsection help to address some of those requirements.

I-memories, wires, pins, and receptacles are all simple atomic constructs. These are actually the degen-
erate forms of record-like constructs, called i-sets, cables, pin-sets, and receptacle-sets, respectively,
which can fill the same roles. So, an i-set is recursively defined as a set of i-sets or a single i-memory; a
cable as a set of cables or a single wire; a pin-set as a set of pin-sets or a single pin; and a receptacle-set as
a set of receptacle-sets or a single receptacle. The power of these constructs is that the programmer does
not need to fully specify their form: unspecified portions of the hierarchy are inferred (dynamically) from
the current execution context.

An i-set is shown graphically as a labeled rectangular region. (If it is not otherwise apparent, the region
can be distinguished from a memory rectangle by being drawn with a dashed line.) It encompasses any i-
sets (including i-memories) which it contains. An asterisk within an i-set represents zero or more addi-
tional unspecified i-sets. An empty i-set rectangle is a special case which represents either an i-memory or

an i-set containing any number of component i-sets.

Just as there is a one-to-one correspondence between i-memories on a board and pins in the board’s
interface, there is the same correspondence between the i-sets on the board and pin-sets in the board’s

interface. And, just as pins on a board fit into receptacles of a socket, pin-sets from a board fit into recepta-



cle-sets of a socket. It is at this stage where all unspecified structures become known to SC. That s, when
a board interface is inserted into a socket, that interface is made to conform to the socket, defining any
unspecified portions of any pin-sets in the interface which in turn defines any unspecified portions of any i-

sets on the board.

Cables, which are shown as lines (again, dashed if necessary to distinguish them from wires), connect
the receptacle-sets of a socket to other entities, and thereby the receptacles within those sets to memories.
The simplest such binding is shown by drawing a cable between the socket and an i-set, in which case the
form of the cable (and therefore the receptacle-set with the same name in the socket) is inferred to have the
same structure as the i-set. Each wire of the cable (i.e. receptacle of the socket) is attached to the i-memory
of the i-set with the same name, and with a signal set identical (in color and name) to the posting set of the
i-memory.

Cables can also be built up from individual cables (including wires) using the bundling construct, shown
as a triangle. The cable being built is attached to the apex of the triangle, and the component cables are

attached to its base. This construct is unidirectional—the cable from the apex must always connect to a

Q.

socket or the base of another bundling.

Fig. 6. Bundling wire y and cable x into cable z

With these record-like constructs, SC programmers can build a “template” board, which reads objects or
modules from some of its pins and specifies how they should interact to a limited degree, even if the entire
interface of those modules is not known. Likewise, a module can access part of its interface without neces-
sarily knowing the form of the entire receptacle-set into which it is inserted. For example, a socket could

pass a hierarchical file system to a module by representing each directory or folder as a receptacle set and



each file as an receptacle, and a module inserted into the socket needs only to identify the specific items

which it knows about within the corresponding i-set.

E Arrays

Memories within SC, like tape frames within F-Nets, can only be accessed by a single chip at a time.
This is especially troublesome for arrays, since storing the entire array in a single memory would greatly
restrict parallelism, but storing each element in a separate memory can be completely impractical. Neither
approach lends itself well to arrays which change their size dynamically during program execution, mak-
ing data parallelism difficult or impossible to express.

To address these problems, each memory in SC has an associated dimensionality, expressed numerically
as a non-negative integer and graphically as a number of hash marks in the left side of the memory rectan-
gle. Dimensionality is basically a number of dimensions, and memories with dimensionality of zero, like
all the memories discussed so far, are sometimes called scalars, while those with other dimensionality are
called arrays. Each array consists of an infinite number of elements, and all elements have the same type
and same initial data state, but ecach element maintains its own control state and data state during execu-
tion. Each element is uniquely addressed by an index which consists of n integers, where n is the dimen-
sionality of the array. Since i-memories can be arrays, so necessarily can pins, receptacles, and wires.

To understand how memory array elements are accessed requires further explanation of sockets. In a
previous section, sockets were described as waiting until their (module) receptacle was ready, then
snooping on the memory attached to that receptacle to determine the module to execute. In fact, sockets
can have many phases (i.e. levels of snooping), of which reading the (module) receptacle and building
and executing the module is the last. Each other phase waits on and reads one or more primary receptacles
and uses the information there to establish the size in each dimension of one or more secondary recepta-

cles, and to bind (i.e. connect) wires from the secondary receptacle elements to memory array elements. A



secondary receptacle from one phase can be used as the primary receptacle of a subsequent phase. Just as
before, if any memory attached to a primary receptacle is accessed by another module before the socket
finishes all of its phases and the new module therein has some outward effect, then all phases effectively
start all over again from scratch. This rule ensures that the socket binding and execution of the module

therein appear as an atomic action.

There are two basic kinds of hinding modifiers, called selection and translation. These are shown as an
arrow within the module circle, from a wire representing the primary receptacle (to be snooped) to a wire
representing the secondary receptacle (to be accessed using the snooped data). Each arrow is labeled with
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an index list (i.e. a list of small integers), which are prefixed with a *“+” if indicating a translation.

A selection is very similar to normal subscripting. When the primary receptacle becomes ready, n inte-
gers are read from it, where n is the length of the index list on the arrow, and they are used, in order, as
indices into the primary receptacle, as specified by the index list. Put another way, each integer effectively
collapses the primary receptacle in one dimension, specified in the index list. Multiple selections can be
specified for the same secondary receptacle as long as their index lists do not contain the same values.
Specifying all of the indices for the secondary receptacle, as in figure 7, collapses it to a single element,
like normal subscripting. Leaving some indices unspecified results in a secondary receptacle of reduced,
but non-zero, dimensionality. This is not acceptable if the module inserted into the socket in the final phase
is a chip, since a chip can access only a finite number of elements, but is acceptable if the module is a

board, since further selections can be performed on the associated i-memory within the board.

[

Result: ¢ is scalar receptacle,
bound to element 7,18,14
of 3-dimensional array

[

Fig. 7.ATwo selection bindings: scalar from 3 dimensions

Any number of indices in the index list for a selection can be enclosed in parentheses, in which case two



integers (rather than one) are read from the primary receptacle for that index. Those integers are used as
the bottom and top of an index range. Note that such ranges do not reduce the dimensionality of the sec-
ondary receptacle, but simply limit the number of elements in the specified dimensions. These range selec-
tions are so useful that SC provides a shorthand for their use, as in figure 8: By attaching one end of a wire
to the corner of a scalar memory having a datatype of two integers, and the other end to one of the dimen-
sionality hash marks of a memory rectangle, a range selection will be performed for the index correspond-
ing to the hash mark for all subsequent accesses to the array memory. If the array is an i-memory, a similar

notation (with reversed arrow) initializes the range memory with the size of the socket receptacle in that

]
B et 0 (@!@

Fig. 8. Shorthand for range selections (like dimensioning)

dimension.

The above description of selections refers only to the special case when the primary receptacle is scalar.
In the general case, a selection 1s performed (as above) using each element of the (finite) primary recepta-
cle, and the results are effectively organized into an array shaped just like the primary receptacle. The
dimensionality of the result is therefore effectively increased by the dimensionality of the primary recepta-
cle, just as it was decreased by the length of the index list. (Ranges are not allowed with non-scalar pri-
mary receptacles.)

Like selections, translations read n integers from the primary receptacle, but instead of using them as
indices into the secondary receptacle, they are used as offsets for those indices. This allows the secondary
receptacle to be logically shifted in any direction by any offset, being especially useful in conjunction with

a selection representing a stencil.



G. Data Parallelism

To provide data parallelism, a language needs not only to support arrays, but also a way to scale the par-

allelism with the size of the arrays. For this purpose, SC provides the DupAll and DupAny constructs.

The DupAll is only permitted for receptacles connected to memories having a datatype of two integers,
and is represented by prefixing the receptacle’s name with an asterisk. When the receptacle becomes
ready, SC reads the two integers from the memory and treats them as the bottom and top of a range. It then
effectively “clones” the socket to produce one socket for each number in the range, leaving all of the wires
and receptacles alone except for the DupAll receptacle. For each clone, this receptacle’s type is changed to
integer, the asterisk is removed from its name, and the receptacle is wired to a separate new integer mem-

ory which is created specifically for that clone by SC and initialized to a unique integer from the range.

Each of these new cloned sockets persists only long enough to execute one module until it finishes.
When they all finish, a done signal is posted to the original memory, after which the DupAll may do it’s
job again. The DupAny is exacily the same as the DupAll except that (1) a “+” prefix is used instead of a
“x” and (2) the module in only one of the sockets will be allowed to execute before the done signal is
posted and the operation is reset.

DupAll receptacles are often used as primary receptacles for selections or translations, allowing a single
socket to be replicated for each element (or dimension) of an array. It is common to use a separate DupAll

for each dimension.

VvIIL. Conclusion

F-Nets show significant promise for enabling the scalable design and construction of portable structured
parallel programs, and Software Cabling illustrates how this model can be used in conjunction with cur-

rent programming technology to facilitate programming. Techniques such as these are becoming



extremely important in light of the recent trend toward computational grids—i.e. widely distributed clus-
ters of powerful heterogeneous machines, shared by collections of agencies and institutions to handle
extremely high computational loads in an efficient and cost-effective manner. However, the F-Net
approach must still be further validated on real workloads, and that will require the further development of

programming tools and runtime systems, based at least partially on the research presented here.

ACKNOWLEDGMENTS

The F-Nets model was developed as Ph.D. dissertation work at the Oregon Graduate Institute, where it
began with the research and helpful feedback of Robert Babb (thesis advisor), and was furthered by feed-
back from the other dissertation committee members—Michael Wolfe, Harry Jordan, and Richard Kie-
burtz. Early discussions with Dick Hamlet also proved insightful. The CDS package was developed at
NASA Ames Research Center, where support was provided by the NAS and HPCC programs. Doreen

Cheng provided significant feedback in an early documentation effort for SC.

REFERENCES

[1]G. Agha, “Actors: A model of concurrent computation in distributed systems”, MIT Press, 1986.

[2]R. G. Babb II and D. C. DiNucci, “Design and implementation of parallel algorithms with Large-Grain
Data Flow”, in The Characteristics of Parallel Algorithms, Jamieson and Douglass (ed.), Cambridge,
MA, MIT Press, 1987, pp. 335-349.

[3]K. M. Chandy and J. Misra, “Parallel Program Design: A Foundation”, Reading, MA, Addision-Wes-
ley, 1988.

[4]D. C. DiNucci, “A simple and efficient process and communication abstraction for network operating
systems”, LNCS vol. 1199 (CANPC’97 Proceedings), pp.31-45, Berlin, Springer-Verlag, 1997, pp. 31-

45.

[5]D. C. DiNucci, “CDS”, http://www.nas.nasa.gov/NAS/Tools/Projects/CDS



[6]D. C. DiNucci, “A formal model for architecture-independent parallel software engineering”, Ph.D.
Dissertation, Oregon Graduate Institute, 1991, also available at ftp://ftp.netcom.com/pub/di/dinuccitthe-
sis.ps.Z

[7]D. C. DiNucci and R. G. Babb II, “Design and implementation of parallel programs with LGDF2”,
COMPCON’89, San Francisco, 1989, pp. 102-107.

[8]D. C. DiNucci and R. G. Babb II, “Practical support for parallel programming”, Proc. 21st HICSS Soft-
ware Track, 1988, IEEE, 109-118.

[9]K. P. Eswaran et al, “The notions of consistency and predicate locks in a database system”, CACM, vol.
19, 11 (November 1976), pp. 624-633.

[10]D. E. Knuth, “The Art of Computer Programming: Volume 1/Fundamental Algorithms”, Addison-
Wesley, Reading, MA (1975).

[11]R. Milner, “A calculus of communicating systems”, Lecture Notes of Computer Science, vol. 92, Ber-
lin, Springer-Verlag, 1980.

[12]]. Peterson, “Petri net theory and the modeling of systems”, Englewood Cliffs, NJ, Prentice-Hall,
1981.

[13]V. R. Pratt, “Modeling concurrency with partial orders”, International Journal of Parallel Program-

ming, vol. 15, 1(February 1986), pp. 33-71.



